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This paper presents a new method dedicated to thermal conductivity measurement of low-density insu-
lating materials. The three layers experimental device (brass/sample/brass) and the principle of the mea-
surement based on a pulsed method are presented. The three-dimensional modelling of the system is
used for a sensitivity analysis. The estimation method is described and applied to experimental measure-
ments carried out at atmospheric pressure and under vacuum. We conclude that the thermal conductiv-
ity is estimated with a precision better than 5% and that the precision of the thermal diffusivity
estimation depends on the density of the material.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The existing methods are not suited to thermal conductivity
measurements of low density insulating materials. The contact
transient methods using plane or linear heating element: hot disk
[1–2], hot wire [3], hot plate [4], hot strip [5–6] cannot measure
precisely thermal conductivity of low density insulating materials
for the following reasons:

� The thermal capacity and the thermal resistance of the heating
element (often heterogeneous and made of a metal wire
inserted between two plastic films) is not known with precision
and is often taken into account by a simplified model.

� The sensitivity of the measured temperature to the thermal
capacity of the heating element is very high if the thermal
capacity of the insulating material is low (case of a low density
material)

� The thermal conductivity of the heating element is higher than
the conductivity of the insulating material. The longitudinal heat
transfer (parallel to the contact surface between the heat source
and the sample) in the heating element that is not taken into
account in the models may be and lead to estimation errors.

The Flash method [7] is difficult to use for the following
reasons:
ll rights reserved.
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� The insulating materials are often semi-transparent to the radi-
ations of the Flash lamp,

� It is very difficult to measure precisely a surface temperature on
a low density material,

� The heat transfer on the heated face is often very different of the
heat transfer on the other faces (very important temperature
differences).

To avoid the first two disadvantages, the sample may be in-
serted between two heat conducting plates; a device based on this
principle has already been used for the liquids [8]. For very low-
density materials, one can show that the sensitivity of the un-
heated face temperature to the thermal conductivity is highly cor-
related to the sensitivity to the convective losses and that the
sensitivity to the thermal diffusivity is low.

The aim of this work was to develop a new method suited to the
thermal conductivity (and eventually diffusivity) measurement of
low- and very-low-density insulating materials.

2. Principle and experimental device

The experimental device includes a cylindrical sample
(R = 2 cm, e = 5–10 mm) of the material to be characterized in-
serted between two brass discs with a thickness, eb = 0.4 mm and
the same radius (cf. Fig. 1). Two type K thermocouple with wire
diameter 0.05 mm are welded on the external face of each brass
disc by the technique of the separated contact (with a distance of
5 mm between the two wires). The lower disc is in direct contact
with a plane circular heating element having the same diameter
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Nomenclature

a thermal diffusivity (m2 s�1)
c specific heat (J kg�1 �C�1)
D diameter (m)
e thickness (m)
h convection heat transfer coefficient (W m�2�C�1)
H transfer function
p Laplace parameter
Rc thermal contact resistance (�C W�1)
S area (m2)
t time (s)
tmax time at which maximum temperature is reached (s)
tub upper bound of the time estimation interval (s)
T temperature (�C)
e porosity

h Laplace transform of the temperature
u0 heat flux density (W m�2)
U0 Laplace transform of the heat flux density
k thermal conductivity (W m�1 �C�1)
q density (kg m�3)

Subscripts
air air
b brass
1 heated face
2 unheated face
3 lateral faces
s solid matrix of the porous medium
v vacuum
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and set on an insulating material. A pressure is applied on the un-
heated brass disc by four PVC (chosen for its low thermal conduc-
tivity) tips with a very low contact surface area. The upper surface
of the unheated brass disc exchanges with the ambient air by nat-
ural convection and radiation.

A heat flux is applied during a few seconds to the heating ele-
ment and the temperatures, Tb1(t) and Tb2(t) of the brass discs
are recorded. A three-dimensional model associated to an inverse
method is then used to estimate the thermal conductivity and
the thermal diffusivity of the insulating material inserted between
the two brass discs.

The heat flux is produced by a plane heating element during a
few seconds instead of being produced by a flash lamp (device ini-
tially tested) during a few milliseconds for the following reasons:

� The temperature increasing of the heated face must not be
too fast to be compatible with the thermocouple response
time.
� A uniform pressure may be easily applied on the brass discs

through the plane heating element.
� A light part of the flash may reach the lateral surfaces by

reflection, this disadvantage is avoided with a plane heating
element.

3. Model and estimation method

3.1. Assumptions

� The temperatures, Tb1 and Tb2 in the brass discs are uniform
and
h3

h2

Brass 
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Fig. 1. Experimental device.
� The thermal contact resistances (typically 10�4 m2 K W�1)
between the sample and the brass discs are negligible in
comparison with the thermal resistance of the sample
(greater than 5 � 10�2 m2 K W�1 for the tested samples).

As a first step, the following case is considered: a unique sample
with heat transfer by convection with the ambient air on all its
faces receives a direct and short heating on one face (no brass discs
as represented in Fig. 2).

Setting �Tðr; z; tÞ ¼ Tðr; z; tÞ � Te

The equation of heat becomes:

@2�Tðr; z; tÞ
@r2 þ 1

r
@�Tðr; z; tÞ

@r
þ @

2 �Tðr; z; tÞ
@z2 ¼ 1

a
@�Tðr; z; tÞ

@t
ð1Þ

Initial and boundary conditions may be written as:

z ¼ 0! k
@�Tðr; 0; tÞ

@z
¼ h1

�Tðr;0; tÞ � /0ðtÞ ð2Þ

z ¼ e! �k
@�Tðr; e; tÞ

@z
¼ h2

�Tðr; e; tÞ ð3Þ

r ¼ 0! @�Tð0; z; tÞ
@r

¼ 0 ð4Þ

r ¼ R! �k
@�TðR; z; tÞ

@r
¼ h3

�TðR; e; tÞ ð5Þ

t ¼ 0! �Tðr; z;0Þ ¼ 0 ð6Þ

The Laplace transform applied to relation (1) with
L½�Tðr; z; tÞ� ¼ hðr; z; pÞ leads to:

@2hðr; z; pÞ
@r2 þ 1

r
@hðr; z;pÞ
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The Laplace transforms of the boundary conditions are:
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Fig. 2. Experiment schema for a unique sample.
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k
@hðr;0;pÞ

@z
¼ h1hðr;0; pÞ �U0ðpÞ ð8Þ

� k
@hðr; e; pÞ

@z
¼ h2hðr; e; pÞ ð9Þ

@hð0; z; pÞ
@r

¼ 0 ð10Þ

� k
@hðR; z;pÞ

@r
¼ h3hðR; e;pÞ ð11Þ

hðr; z;0Þ ¼ 0 ð12Þ

Setting: hðr; z;pÞ ¼ Rðr;pÞZðz;pÞ

One obtains : hðr;z;pÞ¼
X1
n¼1

AnJ0 anrð Þ bnchf cn e� zð Þ½ �þH2sh cnðe� zÞ½ �g

ð13Þ
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xn is solution of : xJ1ðxÞ¼H3J0ðxÞ ð15Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The mean temperatures for z = 0 and e may be calculated by inte-
gration of relation (13) between r = 0 and R:

hmoyð0;pÞ¼
X1
n¼1

4U0ðpÞ e
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x2
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sh bnð Þþbn H2þH1ð Þch bnð Þ
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nþH2H1
� �
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The next step is the study of the three layers device represented in
Fig. 3.

The relations (1), (4), (5), and (6) remain valid in this case.
The local thermal balance at radius, r, on the heated brass disc

(supposed at uniform temperature, Tb1(t)) is:

pR2e1qbcb
@Tb1

@t
¼ /0ðtÞpR2 � h1pR2Tb1 � h32pRe1Tb1

þ
Z R

0
2prdrkse

@Tðr;0Þ
@z

ð20Þ

The integration of this local balance between, r = 0 and r = R with a
Laplace transformation leads to:
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Fig. 3. Experimental schema of a three layers device.
This equation is similar to the relation (8) considering the mean
temperature for a given value of z instead of the local temperature
at (r,z) and replacing h1 by a corrected

coefficient : h1c ¼ qbcbe1pþ h1 þ
2h3e1

R

	 

ð22Þ

The thermal balance of the unheated disc leads similarly to a
corrected coefficient:

h2c ¼ qbcbe2pþ h2 þ
2h3e2

R

	 

ð23Þ

By considering the mean temperature at z instead of the local
temperature at (r,z), this boundary conditions are the same as for
a unique sample. So that for the three layers system brass/sam-
ple/brass, the expressions (18) and (19) of the mean temperatures,
respectively, at z = 0 and e for a unique sample remains valid if h1 is
replaced by h1c and h2 by h2c in relation (17).

The transfer function H(p) of the system may be written as:

HðpÞ ¼ hðe; pÞ
hð0;pÞ ð24Þ

and : Tb2ðtÞ ¼ Tb1ðtÞ � L�1½HðpÞ� ð25Þ

These two relations are true whatever the boundary condition
on the heated brass disc is, particularly if this disc exchange heat
by conduction with an insulating material (as described in Fig. 1)
rather than by convection with air.

The principle of the method is to estimate the transfer function
H(p) by estimating the values of the three parameters: a, k and
h = h2 = h3 that minimize the sum of the quadratic errors between
the experimental values of Tb2(t) and those calculated by relation
(25) with experimental values of Tb1(t). The number of parameters
to be estimated is the same that in the classical flash method (heat
flux density, /; thermal diffusivity, a and convection heat transfer
coefficient, h). The minimization is realized by using the Leven-
berg–Marquart method.

One of the advantages of the method is that it is not sensitive to
the heat transfer on the heated face; in the case of a convective
heat transfer with important variations of temperature on this face,
the hypothesis of a constant convection coefficient being the same
on the heated and on the unheated face is not totally true. It will be
shown that this model approximation can lead to errors in the esti-
mated parameters particularly in the case of a measurement real-
ized on an insulating material where the heated face temperature
may reach several decades degrees and where the resistance to the
external transfer (convection) is of the same order of magnitude
that the resistance to the internal transfer (conduction).

Compared to the limits (described in introduction) of the classi-
cal contact methods and of the Flash method for the thermal con-
ductivity measurement of low density material, the proposed
method has the following advantages:

� The temperature measurements are more precise since they
are done on a heavy conductive material (brass),
� The thermal capacity of the two discs (homogeneous) is

known precisely and taken into account, and
� The longitudinal heat transfers in the discs are taken into

account without approximation in the model (boundary
condition of uniform temperature).

4. Sensitivity analysis

The reduced sensitivities of the transfer function H(p) have been
calculated and represented in Fig. 4 for a three layers system with
the following characteristics:
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Fig. 4. Reduced sensitivities of the transfer function H(p) calculated by relation (25).
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– Brass discs: eb = 0.4 mm, D = 40 mm, k = 100.4 W m�1 K�1,
a = 3.14 � 10�5 m2 s�1;

– Samples:
1. Insulating material: k = 0.02 W m�1 K�1, a = 4 � 10�6 m2 s�1,

e = 5 mm, e = 10 mm;
2. Polystyrene: k = 0.035 W m�1 K�1, a = 8 � 10�7 m2 s�1,

e = 10 mm; and
3. Cellular concrete: k = 0.15 W m�1 K�1, a = 5 � 10�7 m2 s�1,

e = 10 mm.
It can be noticed that:

– For a given material, if the sample thickness decreases then the
sensitivity to the thermal diffusivity increases and the sensitiv-
ity to the thermal conductivity decreases.

– For a given sample thickness, if the thermal capacity of the sam-
ple increases then the sensitivity to the thermal diffusivity
increases.

– The sensitivity to the thermal diffusivity is quite low for very low
density materials so that the thermal diffusivity will not be mea-
surable with this method. Nevertheless, this sensitivity is high
enough to estimate the thermal diffusivity of insulating material
with higher density such as polystyrene or cellular concrete.

– The sensitivity to the thermal conductivity is high in each case
and is not correlated with the sensitivities to the convection
coefficient and to the thermal diffusivity. The thermal conduc-
tivity is thus estimable by this method for all type of insulating
materials
5. Results

5.1. Estimation from numerical simulations

The temperatures in a three layers device have been simulated
with COMSOL. The following data has been considered:

– Sample: diameter = 35 mm, thickness = 5.6 mm, thermal proper-
ties: k = 0.02 W m�1 K�1, qc = 5000 J m�3 K�1, a = 4 � 10�6 m2

s�1 and
– Metallic discs (copper): diameter = 35 mm, thickness = 0.4 mm,

thermal properties: k = 397.5 W m�1 K�1, q = 8940 kg m�3,
Cp = 384.9 J kg�1 K�1.

First, the simulation of the temperatures has shown that the
hypothesis of uniform temperature in the two metallic discs is valid.

Then, the simulated temperatures Tb1(t) and Tb2(t) have been
considered as experimental data and an estimation parameter
has been applied according to the two following methods:

1. The unheated face temperature, Tb2(t) is the only experimental
data considered as in the classical flash method. An inversion
method is used to estimate the heat flux density, u0; the ther-
mal diffusivity, a; the thermal conductivity, k and the convec-
tion coefficient h that minimize the sum of the quadratic
errors between the experimental curve and the simulated curve
Tb2(t) calculated by relation (19) with the corrected convection
coefficients given by relations (22) and (23).
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Table 2
Estimated values of a, k and h as a function of the upper bond tub of the time
estimation interval for a test on a rigid foam (tmax = 185 s).

tub (s) a (m2 s�1) k (W m�1 K�1) qc (J m�3 K�1) h (W m�2 K�1)

80 4.67 � 10�7 0.0393 8.40 � 104 4.15
100 4.59 � 10�7 0.0410 8.92 � 104 4.92
120 4.55 � 10�7 0.0420 9.21 � 104 5.29
150 4.52 � 10�7 0.0425 9.38 � 104 5.47
160 4.52 � 10�7 0.0425 9.38 � 104 5.47
180 4.52 � 10�7 0.0425 9.37 � 104 5.46
240 4.56 � 10�7 0.0417 9.14 � 104 5.30
300 4.68 � 10�7 0.0405 8.65 � 104 5.03
360 4.67 � 10�7 0.0405 8.64 � 104 5.02

Y. Jannot et al. / International Journal of Heat and Mass Transfer 52 (2009) 1105–1111 1109
2. The temperature Tb1(t) of the heated face is considered as input
experimental data of the system both with the temperature
Tb2(t). An inversion method is used to estimate the thermal dif-
fusivity, a; the thermal conductivity, k and the convection coef-
ficient h that minimize the sum of the quadratic errors between
the experimental curve and the simulated curve Tb2(t) calcu-
lated by relation (25) of the unheated face temperature.

The results of these two estimations are reported in Table 1,
where tup is the upper bound of the estimation time interval.

It can be noticed that:

– The method 1, based on the 3D model and considering that the
only known temperature is Tb2(t), does not lead to a precise esti-
mation of k if the convection coefficient h1 on the heated face is
different of the coefficients, h2 and h3, on the other faces.

– The method 2 gives in all cases a precise estimation of the ther-
mal conductivity, even when a random noise with an amplitude
of 0.01 �C has been added to the temperatures simulated with
COMSOL. The estimation of the thermal diffusivity becomes less
precise if the measurement noise increases.

– A simulation based on method 2 with h2 = 5 W m�2 K�1 and
h1 = h3 = 10 W m�2 K�1 leads to an error of 3.5% on the estimated
value of k and of 2% on the estimated value of a. An extreme case
has been considered (h3 = 2h2) so that the errors with experi-
mental data will be less important.

The effect of an error on the supposed ‘‘known” value of the
thermal capacity, qcmp of the two metallic plates has also been
investigated. It was found that an error of x% on qcmp leads to
the same error on the estimated value of k but has no significant
influence on the estimated value of a, for x <5%. It has been verified
that an error of 5% on the thermal conductivity of the metallic
plates has no influence on the estimated values.

5.2. Estimation from experimental results

Experimental measurements with the three layers method have
been realized for 2 materials: a rigid foam of 10.0 mm thickness
and a cellular concrete of 8.1 mm thickness. The sample’s diameter
was 40 mm.

The Tiny hot plate method [9] has also been used to estimate
the thermal conductivities of these two materials and the hot plate
method [4] has been used to estimate the thermal effusivity of the
cellular concrete.

A series of three tests has been realized on each sample. Fig. 5
represents an example of experimental curves obtained with the
rigid foam. Fig. 6 represents the experimental and simulated
curves calculated with the values obtained by the inversion
Table 1
Results of the estimations realized by two different methods from temperatures simulated with COMSOL.

Estimation method ts = 100 s ts = 200 s ts = 300 s

106a 103k h 106a 103k h 106a 103k h

h1 = h2 = h3 = 10 W m�2 K�1

1 4.18 17.7 11.0 4.19 16.4 11.3 4.2 16.5 11.3
2 4.01 19.8 11.1 3.95 19.8 11.1 3.8 19.9 11.2

h1 = 15 W m�2 K�1; h2 = h3 = 5 W m�2 K�1

1 4.12 33.8 7.4 4.11 33.8 7.4 4.1 34.0 7.5
2 3.95 19.9 5.4 3.93 19.9 5.4 3.9 19.9 5.5

h1 = 15 W m�2 K�1; h2 = h3 = 5 W m�2 K�1; dTb1 = dTb2 = 0.01 �C
1 4.16 27.0 8.4 4.22 31.7 7.7 4.1 33.7 7.5
2 3.88 20.1 5.3 3.85 20.5 5.6 3.8 20.6 5.7

h1 = h3 = 10 W m�2 K�1; h2 = 5 W m�2 K�1

2 3.92 19.4 6.2 19.3 16.4 6.1 4.01 19.3 6.1



Table 3
Estimated values of a, k and h for the three layers method.

Material Test number a (m2 s�1) k (W m�1 K�1) qc (J m�3 K�1) h (W m�2 K�1)

Rigid foam 1 4.54 � 10�7 0.0420 9.25 � 104 5.38
2 4.52 � 10�7 0.0425 9.37 � 104 5.46
3 4.56 � 10�7 0.0423 9.26 � 104 5.33

Mean 4.54 � 10�7 0.0423 9.29 � 104 5.39
Standard deviation (%) 0.36 0.49 0.58 0.99

Cellular concrete 1 2.54 � 10�7 0.156 6.11 � 105 7.26
2 2.58 � 10�7 0.149 5.76 � 105 6.99
3 2.54 � 10�7 0.155 6.11 � 105 7.24

Mean 2.55 � 10�7 0.153 5.99 � 105 7.16
Standard deviation (%) 0.90 2.47 3.37 2.10

Table 4
Estimated values of a, k and qc of a rigid foam at atmospheric pressure and under
10�2 mbar.

a (m2 s�1) k (W m�1 K�1) qc (J m�3 K�1)

P = 1 bar 4.54 � 10�7 0.0423 9.29 � 104

P = 10�2 mbar 2.12 � 10�7 0.0183 8.75 � 104
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method. The residues (multiplied by 10) that are also repre-
sented show that the modelled curve is very close to the exper-
imental one.

Table 2 gives the estimated values of k, a and h as a function of
the upper bound tub of the estimation time interval for a test with
the rigid foam. One can notice a very low variation of the estimated
values, the estimation for this material has further been realized
between t = 0 and the time, tmax where the temperature, Tb2

reaches its maximum value. All the experimental results are
presented in Table 3 showing that the reproducibility of the results
is quite good.

The difference between the thermal conductivity values esti-
mated by the tiny hot plate (k = 0.0405 W m�1 K�1 for the rigid
foam and k = 0.165 W m�1 K�1 for the cellular concrete) and by
the three layers method is lower than 5%.

For the cellular foam, the thermal diffusivity may be calculated
from the thermal effusivity measured by the hot plate
(E = 325 J m�2 K�1 s�1/2) and from the thermal conductivity mea-
sured by the Tiny hot plate method (k = 0.165 W m�1 K�1), the re-
sult is a = 2.56 � 10�7 m2 s�1. This difference between this value
and the value measured by the three layers method is lower than
1%.

A last measurement series of three tests has been done with the
rigid foam sample under a pressure of 10�2 mbar. Table 4 reports
the thermal properties estimated under the atmospheric pressure
and under a pressure of 10�2 mbar.

If the radiation heat transfer is negligible (low emissivity of the
brass disc surface and important diffusion inside the material), the
hypothesis of parallel thermal resistance generally considered in
high porosity porous media leads to an equivalent thermal conduc-
tivity [10]:

k ¼ ekair þ ð1� eÞks ð26Þ

The values of k and ks have been estimated from two experimental
sets of curves T1(t) and T2(t) without any assumption on the poros-
ity value.

The porosity may thus be estimated by: e ¼ k�ð1�eÞks
kair

¼ 0:92
Considering the expression of the thermal capacity of the por-

ous medium:

qc ¼ qsð1� eÞcs þ qairecair ð27Þ
The thermal capacity of the rigid foam under vacuum may be
estimated as:

qvcv ¼ qc � qairecair ¼ 92;900� 1:2� 0:92� 1006

¼ 91;789 J m�3 K�1

The difference between this predicted value and the measured va-
lue 87,500 J m�3 K�1 given in Table 4 is lower than 5% and validates
our measurement under low pressure.

Furthermore, the thermal conductivity of the solid material
constituting the matrix may be evaluated by: ks ¼ k�ekair

1�e ¼
0:231 Wm�1 K�1

And its thermal capacity qscs by:

qscs ¼
qc� eqaircair

1� e
¼ 1:15� 106 J m�3 K�1

These two values are compatible with known values although they
are not estimated with precision since the porosity has been esti-
mated from thermal conductivity measurement and considering
the assumption of parallel thermal resistances in the porous med-
ium. Nevertheless, a specific and more precise measurement of
the porosity (carried out with a picnometer for example) may lead
to precise estimations of the thermal conductivity and of the ther-
mal capacity of the solid matrix of the tested porous medium.

6. Conclusions

The proposed method is based on a three layers system which
input and output temperatures are measured after applying a short
heat flux on one layer. The 3D transfer function of the system is
estimated by applying an inverse method to a convolution product.
This method leads to a satisfying precision for the estimation of the
thermal conductivity (<5%) of the low to very low conductivity
materials (k < 0.15 W m�1 K�1). It also gives an estimation of the
thermal diffusivity of the material having a thermal capacity great-
er than 4 � 104 W m�3. The measurement may be done at atmo-
spheric pressure or under vacuum. The thermal diffusivity of the
super-insulating materials with very low density seems difficult
to measure with this method.
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