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Characterization of systems often relies on a single point response that is a convolution product between
a transfer function, an impedance, and the strength of a source. This requires perfect knowledge or mea-
surement of this source. Another possibility is to measure two point responses in such systems. These are
also linked, under certain causality conditions, by a different convolution product based on another type
of transfer function, called here a transmittance. It is shown that using this kind of transmittance-based
model, with one of the two responses as a pseudo-source to explain the other one, leads to a model with
fewer parameters, which is very interesting for parameter estimation. Replacement of the exact strength
of the source by a noised response in a non-linear least square minimization process does not bring any
additional bias and the standard deviations of the parameter estimates can be calculated on a theoretical
stochastic basis. An example of such an estimation technique in a thermal characterization of a light insu-
lating sample by the three-layer method is used to show the practical interest of this estimation method
and to validate the assessment of the estimation errors through a Monte Carlo approach. Finally a count-
ing of the number of parameters present in the transmittance model, within a very general context of a
one-dimension heat transfer characterization experiment, shows its parsimonious character when com-
pared with impedance-based parameter estimation techniques.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Classical transient thermal characterization techniques rely on
a common principle: a sample, at uniform initial temperature, is
stimulated by a surface heat source qðtÞ ðW m�2Þ which is applied
onto one of its faces, while its transient temperature rise T(t) (kelv-
ins), at a single given point, is recorded. Let us note that variations
exist where q(t) is a lineic heat source (W m�1), for the hot wire
method) or even a power heat source (W, for the spherical hot
probe method).

The value of the unknown parameters, called bj (for j = 1 to n)
here, are estimated next through a minimization, in the least
square sense, of the difference between the experimental temper-
ature response Texp(t) and the theoretical output of the correspond-
ing modelled response Tmod(t;b), where parameter vector b gathers
the bj parameters.

Examples of such characterization techniques, here the flash
method [1] and the hot plane method [2,3], whose principles
are recalled in Figs. 1 and 2, will be detailed in the next two
sections.

In this class of methods based on models of the q to T type,
which we will call A models now on, only one temperature Texp

(t) is measured while some information about the source term
has to be known. This knowledge can have two different origins:

– In methods of the A1 type, the variation of q(t) with time is
completely known. This heat source is a Heaviside function
(step) for the transient hot plane method. The effect of
temperature measurement noise errors on the estimated
parameters is now completely known for A1 methods because
the estimated variance–covariance matrix depends on the
standard deviation of the noise and on the sensitivity matrix
of the temperature model with respect to the parameters
which are looked for, for an independent identically distrib-
uted noise, see [4,5], and [6].

– In methods of the A2 type, this shape is known, within a multi-
plicative constant that has to be estimated, together with the
other bj parameters: in the case of the flash method, see
Section 1.1.

– In methods of the A3 type, the intensity q(t) source is com-
pletely unknown, so this signal has to be measured in addition
to the temperature signal Texp(t).
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Nomenclature

a thermal diffusivity (m2 s�1)
bb̂ estimation bias vector
c specific heat (J kg�1 K�1)
C1,C2 thermal capacities, for a unit area, of brass layers

(J m�2 K�1)
cov (�) variance–covariance matrix of a random vector
d distance between sensors in the thin plate method (m)
e thickness of sample (m)
eb̂ estimation error vector
E thermal effusivity (W s1/2 m�2 K�1)
E(�) mathematical expectancy
f(�) function
g(t) time function corresponding to the shape of the inten-

sity of the source
h heat transfer coefficient (W m�2 K�1)
H(�) Heaviside function
Ir identity matrix of order r
Jw least squares sum based on a transmittance model
Jz least squares sum based on an impedance model
M(�) convolution matrix function for a column vector
N number of synthetic experiments for Monte Carlo simu-

lations of estimations
m number of times of measurement
n number of parameters
nAp number of parameters to be estimated in estimations of

the Ap type (p = 1 to 3)
nB number of parameters to be estimated in estimations of

the B type
nz number of parameters in the temperature field solution
nz i number of parameters in parameter vector bz i

p Laplace parameter (s�1)
q(�) intensity of a surface source depending on time (W or

W m�2)
q0 coefficient of a surface source depending on time (W or

W m�2)
Q0 energy of a surface source (J m�2)
r residual vector (K)
Rc thermal contact resistance (K m2 W�1 or K W�1)
Sw sensitivity matrix of transmittance vector W with re-

spect to parameter vector b (dimensions: m � n)
s statistical standard deviation of a parameter estimate
t time (s)
t0 duration of a door excitation (s)
tk kth time of measurement (s)

T temperature (K)
T1 temperature of reference sensor (K)
T2 temperature of response (K)
T temperature vector (K)
x position vector in 1D, 2D or 3D (m)
W(�) transmittance transfer function (–)
W transmittance vector (K W�1 or K m�2 W�1)
X sensitivity matrix of temperature vector T with respect

to parameter vector b (dimensions: m � n)
Z(�) impedance transfer function (K W�1 or K m�2 W�1)
Z impedance vector (-)

Symbols
bj parameter number j
b parameter vector in the transmittance transfer function
bz parameter vector in the temperature field solution
bz i parameter vector in the impedance transfer function

number i (i = 1 or 2)
d(t) Dirac distribution in time (s�1)
e1, e2 noise column vectors for temperature sensors 1 and 2

(K)
e⁄ concanated noise column vector (K)
q density (kg m�3)
r stochastic standard deviation of measurement noise (K)
s characteristic diffusion time (s)
⁄ convolution product between two functions of time

Subscripts
i number of a sensor
j number of a scalar parameter in a parameter vector
k number of a measurement time
phys physical

Superscripts
avail available value for assessment of stochastic properties

of estimated parameters
exact exact value of a parameter
exp experimental
true true (unbiased) model
T transpose of a matrix
^ estimated value or estimator of a parameter
� Laplace transform
⁄ dimensionless

Fig. 1. Principle of the flash method.
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In order to get rid of the constraints associated to characteriza-
tion techniques of the A2 or A3 type, another very attractive ap-
proach consists in measuring the temperatures (1 and 2) at two
different locations instead of one. These models can be designated
by T1 to T2 models or called also B models here. Once the two tem-
peratures measured, the corresponding signals have to be pro-
cessed through a least square minimization.

Different examples can be given for class B methods: the thin
plate method [7,8] will be briefly discussed in Section 1.3 while
the three-layer method [9] will be presented in Section 1.4. An-
other example of this class of method, in cylindrical geometry, is
the parallel hot wire technique [10,11].

So, thermal characterization methods of the class B type now
exist but, to our knowledge, no stochastic study has ever been
implemented to derive the standard deviations of the estimation
error in the same way as what has been done for class A1
methods. That is the objective of what will be developed in
Section 2.
1.1. The flash method

In the flash method case (A2 type method, see [1] for example),
the ‘‘rear face’’ temperature response T2 of a homogeneous sample



Fig. 2. Principle of the hot plane method.
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of thickness, to a front face surface heat source, is measured and its
thermal diffusivity a is looked for using a transient conduction
model, see Fig. 1. The sample thermo physical properties are sup-
posed not to depend on temperature during the experiment.

The following additional assumptions can be made here:

– the surface heat source is a pulse one: q(t) = Q0d(t), with d(t) the
Dirac distribution (s�1) and Q0 (J/m2) the excitation level, that is
the energy absorbed by one unit of area of the sample;

– heat transfer is one-dimensional with two equal convection
constant coefficients (h1 = h2 = h) and the surrounding ambient
air temperature is equal to the uniform initial temperature of
the sample (taken equal to zero here);

With these conditions the heat equation and its boundary con-
ditions, are linear and the temperature response becomes:

T2 ¼ fphysðt; a;h;q; c; e; qðtÞÞ ð1Þ

where fphys is a function of time t, on the geometrical (e) and ther-
mophysical properties (diffusivity a and volumetric heat qc) of
the sample and on its coupling with the outside environment at a
zero reference temperature level through the h coefficient. This
function also depends on the intensity q (t) of the source in a linear
way. It can be called a ‘‘physical’’ function here since its arguments,
its variable and its value have physical units.

A close look at the way the parameters are present, either in the
heat equation and its associated conditions or in its solution (5), al-
lows to identify the parameter groups whose knowledge is com-
pulsory for the calculation of the output of the T2 temperature
model:

T2 ¼ f ðt; a=e2;he=k;Q 0=qceÞ ð2aÞ

A normalization of both the argument (time) and of its value (tem-
perature) of this new function f, to make the Fourier number t⁄ and
the reduced temperature T�2 (with 0 6 T�2 6 1Þ appear, transforms
the previous equation into:

T�2 ¼ f �ðt�; he=kÞ with t� ¼ ða=e2Þt and T�2 ¼
T2

Q 0=qce
ð2bÞ

Let us note that only function f⁄ in Eq. (2b) is a real mathematical
function, that is of dimensionless value and linking dimensionless
quantities. Consequently the three parameters present as argu-
ments of function f in Eq. (2a) are independent groups which appear
at different locations in the heat equation and in its associated
boundary conditions or in the analytical expression of its solution.
They are

– either ‘‘pi groups’’ (see Vaschy-Buckingham theorem) in the
dimensional analysis of this problem (case of the Biot number
h e/k),
– or normalization constant (s) (case of the characteristic fre-
quency a/e2 and of the adiabatic asymptotic temperature Q0/
qc e) necessary to obtain the mathematical model (2b).

This shows that estimation of qc, the sample volumetric capac-
ity, as an additional parameter, would require the measurement of
Q0, the energy absorbed by unit area of the front face, which corre-
sponds to a characterization method of the A3 type.

So the temperature solution at any point in the sample is a con-
volution product (noted ⁄ here) between the heat source q(t) and a
transfer function Z2:

T2ðt; bÞ ¼ Q 0Z2ðt; b1; b2;qceÞ ¼ b3Z�2ðt; b1;b2Þ

where b ¼ a
e2 ;

h2e
k
;

Q 0

qce

� �T

and Z�2 ¼ qceZ2

ð3Þ

where superscript T designates the transpose of a matrix here.
Another very interesting form exists for Eq. (3), if the Laplace

transforms of the three preceding quantities are considered:

T2ðp; bÞ ¼ Z2ðp; b1;b2;qceÞ�qðpÞ ð4Þ

where

�xðpÞ ¼
Z 1

0
xðtÞ expð�ptÞdt for x ¼ T2; Z2 or q

Transfer function Z2 relies a temperature T2, that is a potential or a
potential difference, to the heat source q (here a power surface den-
sity, but it can also be a thermal power) is analogous to a current
density in electricity (or the intensity of the corresponding current).
It can be called thermal ‘‘impedance’’.

1.2. The hot plane method

In the hot plane method (A1 type method, see [2]) case the
‘‘front face’’ temperature (heated face) T1 is measured, which re-
spects the following model:

T1ðt; bÞ � Z1ðt; bÞ � qðtÞ with b ¼ E Rc mc½ �T ð5Þ

Here 3 parameters, thermal effusivity E, contact resistance Rc and
heat capacity mc of the heating probe (heat source) are looked
for, with the following assumptions:

– the surface heat source q(t) (W/m2) is perfectly known;
– the thicknesses of both samples are considered to be infinite

(semi-infinite heat transfer).

1.3. The thin plate method

The thin plate method [7,8], is designed for measuring the ther-
mal diffusivity a of thin samples, in a strip shape, see Fig. 3, in the
direction of their plane. A transient heat source q(t) of arbitrary
time shape is set over part of the sample surface and temperatures
T1 and T2 at two different locations of the sample are measured. So,
it is a method of the B type. It relies on the fin assumption for the
plate:

– the plate sample is homogeneous and isotropic in the direction
of its plane, with k its corresponding thermal conductivity;

– the Biot number Bi = he/k associated to the heat losses caused by
convection to the surrounding air and linearized radiation to
the radiative environment, at the same temperature T1 as air,
is much smaller than unity. h represents the heat transfer coef-
ficient of these losses on both faces of the fin. It is supposed to
be uniform and e is the plate thickness;

– the initial temperature of the sample, before the start of q(t) is
equal to the reference temperature of the heat losses T1;



Fig. 3. Principle of the thin plate method.
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– the temperature distribution is one-dimensional and the plate
length is large enough to consider the fin as semi-infinite.

The corresponding model writes out:

T2ðt; bÞ �W21ðt; bÞ � T1ðtÞ with b ¼ s b½ �T

where s ¼ d2
=a and b ¼ Bid2

=e2 ð6Þ

Here the new transfer function W21 can be called a ’’transmittance’’.
Its Laplace transform takes a very simple form:

W21ðp; bÞ ¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spþ 2b

p� �
ð7Þ

The interest of this model is that measurement of q(t) is not re-
quired and it involves two parameters only: the characteristic time
s associated to the distance between the two temperature sensors,
which allows the estimation of the in-plane diffusivity a, and
parameter b associated with both the Biot number and the geomet-
ric shape factor d/e.

1.4. The three-layer method

An other method of the B type, the three-layer method [9], see
Fig. 4, has been proposed recently: it relies on the transient mea-
surement of temperatures at two different locations of the sample
and on the estimation of the unknown parameters present in the
transfer function W21 between these two temperatures, called
‘‘transmittance’’ here. The corresponding model writes out:

T2ðt; bÞ �W21ðt; bÞ � T1ðtÞ with b ¼ a k h2½ �T ð8Þ
Fig. 4. Principle of the three-layer method, with the two temperatu
Here three parameters, thermal diffusivity a, thermal conductivity k
and heat exchange coefficient h2 are looked for.

Comparison of Eq. (8) to the A type model (5) shows that, in this
new configuration, the heating resistance generates a surface
power source q(t) which is the cause of both responses T1 and T2

of the brass layers through two impedances Z1 and Z2 such as (in
the Laplace domain):

T1 ¼ Z1�q and T2 ¼ Z2�q ð9a;bÞ

Elimination of �q between Eqs. (9a) and (9b) yields:

T2 ¼W21T1 with W21 ¼ Z2=Z1 ð10Þ

Return to the time domain leads directly to model (6). Here it can be
shown that the transfer function W21 in the time domain exists (the
transmittance function), while the opposite ratio Z1=Z2 is not the
Laplace transform of any function: W12 does not exist.

So, when comparing Eqs. (10) and (8), one can consider that the
real cause q(t) of temperature response T2 has been replaced by a
‘‘pseudo’’ cause T1(t).

As a consequence, estimation of the three parameters present in
model (8) can be estimated through minimization of the least
square sum based on the difference between the experimental
Texp

2 ðtÞ response and the modelled one, W21(t;b) ⁄ T1(t), corre-
sponding to (8) where the theoretical pseudo-excitation T1(t) has
been replaced by its measured value Texp

1 ðtÞ.
This method of estimation based on a transmittance type of

transfer function allows a decrease of the number of parameters
to be estimated with respect to the classical type of estimation
re responses and parameter estimation based on T2 response.
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based on transfer functions of the impedance type: this increases
the precision of the estimations.

In so doing, one gets rid of the need to know or to estimate the
parameters that characterize phenomena occurring upstream the
measurement point, that is the T1(t) measurement, either h1 and
q(t) in the case of a surface source created by the absorption of a
radiation (flash method) or a contact resistance Rc, a heat capacity
mc and the intensity of the surface heat source q(t) if this source is
produced by a heating element in contact with the surface (hot
plane method). No prior knowledge (assumptions about the time
shape) or measurement of the source q(t) is necessary anymore,
which constitutes another advantage, compared to classical meth-
ods. One can give this source the most suited time shape in order to
be able to get maximum sensitivities to the parameters that are to
be estimated without the necessity to measure it.

In the next part of this paper we will not deal with the problems
of the A3 type, where not only one temperature but also a transient
heat source has to be measured concomitantly and we assume that:

– the models used for estimation are not biased,
– the values of parameters (or functions) that are not estimated,

the ’parameters supposed to be known’, are exact (including
the intensity of the source in the A1 type of problem or its time
shape for problems of the A2 type),

– the temperature measurements are made in a non intrusive
way,

– the parameters of the temperature sensor model, that is the cal-
ibration curve that allows a conversion of the sensor output into
a temperature, are known.

The parameters of the sensors are the emissivity of the sample
surface in the case of a radiative measurement, or the thermoelec-
tric power and the cold junction temperature in the case of a mea-
surement by a thermocouple.

We will deal next with the problem of estimating the parame-
ters present in the transmittance function W21(t;b) and we will fo-
cus on one part of the estimation error, that is the estimation error
produced by the measurement noise only.

2. Least-square method for transmittance-based models and
standard deviations of the estimates

2.1. Transmittance-based models and their parameter vectors

We consider here an impedance-based model of the A type with
a single excitation q(t) (also called a source, or an ‘‘input’’, in the
signal processing sense). This can be a power, or a surface or linear
power density, which is the common cause of the temperature re-
sponses in two different points of the physical system, through a
convolution-type equation similar to Eq. (5):

T1ðt;bz1Þ � Z1ðt; bz1Þ � qðtÞ and T2ðt;bz2Þ
¼ Z2ðt; bz2Þ � qðtÞ ð11a;bÞ

where bzi is the parameter vector composed of nzi parameters, and
Zi(t;bzi), for i = 1 or 2, the time impedance, that is the transfer func-
tion, between q(t) and each temperature T1 and T2.

Both impedances depend on the structural parameters of the
system and of the location of the two observations, which are
the components of parameter vectors bzi.

The usual approach for estimating bz2 using the single T2 mea-
surement and impedance-based model (11b), for a known q(t)
source, is to minimize the ordinary least square sum [4]:

Jzðbz2Þ ¼
Xm

k¼1

Texp
2 ðtkÞ � ðZ2ðbz2Þ � qÞðtkÞ

� �2 ð12Þ
where m is the number of available measurements for T2.
In methods of the A1 type, T2 is measured and q(t) is perfectly

known, so the estimation error b̂z2 � bexact
z2 is a random variable of

zero mean and its variance–covariance matrix can be calculated,
using the notions of sensitivity coefficients, scaled or not, gathered in
a sensitivity matrix S, even for non linear models (in the parameter
estimation sense: Z2 is a non linear function of bz2)) [4–6]:

covðb̂z2Þ ¼ r2ðST SÞ�1 ð13Þ

where r is the standard deviation of the temperature measurement
noise, which is assumed to be an independent identically distrib-
uted (i.i.d.) random variable here.

In the experiments of the B type both temperatures T1 and T2 are
measured, impedance models (12a) and (12b) can be replaced by a
single transmittance-based model, see Eqs. (6) and (10) above, where
the output T2 is the same but with a substitution of input q(t) by T1:

T2 ¼ Ttrue
2 ðt;bÞ �W21ðt;bÞ � T1ðtÞ ð14Þ

Two important remarks have to be made here about this class of
transmittance-based models (14):

(i) Temperature function T1 has only a single argument, time t
without any explicit presence of parameter vector bz2.

(ii) The second argument of transmittance W21, and as a conse-
quence of T2, b, is not bz2 anymore. Discussion about the
respective sizes of both vectors, that is about the number
of parameters presents in bz2 and b is made further on, in
Section 4 of this article.

2.2. Matrix/vector form of a transmittance-based model and of its least
square sum

In any application of a least square parameter estimation prob-
lem, the measurements Texp

2 ðtiÞ are made for discrete time values
tk = kDt over a ½ t0 ¼ 0 tend ¼ tm ¼ mDt � time interval. So, both
temperatures of model (14) can be vectorized on the correspond-
ing discrete time grid:

T i ¼ Ti1 Ti2 � � � Tim½ �T for i ¼ 1 or 2 with
T1k
¼ T1ðtkÞ and

T2k
¼ T2ðtk; bÞ for k ¼ 1 to m ð15Þ

In exactly the same way, transmittance function W21(t, b), which will
be noted W hereon, can be discretized into a column vector form:

W ¼ W1 W2 � � � Wm½ �T with Wk ¼Wðtk; bÞ for k ¼ 1 to m

ð16Þ

So, at the model level, convolution product (14) becomes the prod-
uct of a square lower diagonal matrix by a column vector:

T2 ¼ MðWÞT1 ¼MðT1ÞW ð17Þ

where M(�) is a (square) matrix function of a column vector, here a
Toeplitz matrix defined by:

MðxÞ � Dt

x1

x2 x1 0
x3 x2 x1

..

. ..
. ..

. . .
.

xm xm�1 xm�2 � � � x1

2
66666664

3
77777775

where x ¼

x1 ¼ xðt1Þ
x2 ¼ xðt2Þ
x3 ¼ xðt3Þ

..

.

xm ¼ xðtmÞ

2
66666664

3
77777775

ð18Þ

The least square sum based on the transmittance-based model can
be written in a scalar form analogous to (11) or in its corresponding
matrix/vector form:
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JwðbÞ ¼
Xm

k¼1

Texp
2 ðtkÞ � WðbÞ � Texp

1

� �
ðtkÞ

� �2

¼ Texp
2 �MðWðbÞÞTexp

1

		 		2 ð19Þ

In this equation k.k designates the L2 norm of a column vector, with
kzk2 � zT z �

Pm
k¼1z2

k and Texp
1 and Texp

2 are the (m � 1) column vec-
tors corresponding to discretized experimental measurements of
both T1 and T2, with:

Texp
1 ¼ Texact

1 þ e1 and Texp
2 ¼ T true

2 ðbexactÞ þ e2 ð20aÞ
Eðe1Þ ¼ Eðe2Þ ¼ 0 and covðe1Þ ¼ covðe2Þ ¼ r2Im ð20bÞ

In the above equations, e1 and e2 are the noise vectors, at the mea-
surement times, on each temperature signal. They are supposed to
be independent and identically distributed. E (.) and cov (.) are the
mathematical expectancy and the variance–covariance matrix of
random vector while Im is the identity matrix of size m and r the
standard deviation of the measurement noise.

We also assume that both e1 and e2 noises are independent:

covðe�Þ ¼ r2I2m with e� ¼ e1

e2

� �
ð20cÞ

Let us stress here that a constraint exists: the two measurement de-
vices for T1 and T2 should be run in a synchronous mode (same
acquisition period). We also assume, for facility reasons, that the
two acquisitions are implemented with the same gain, in order to
get the same standard deviation for both temperature signals: this
yields an explicit expression of the level of the standard deviation
of the estimates in Section 2.4 further down. However, more general
cases, with different standard deviations, can also be considered.

Criterion (19) can be given an alternate form:

JwðbÞ ¼ Texp
2 � Tavail

2 ðbÞ
			 			2

where Tavail
2 ðbÞ

�MðWðbÞÞTexp
1 ¼MðTexp

1 ÞWðbÞ ð21a;bÞ

Let us note that only an approximated version, Tavail
2 ðbÞ of the output

T true
2 ðbÞ given by Eq. (14) is available here, with a noised input Texp

1

instead of Texact
1 .

It can be shown, see [6, Section 3.3.3.4]), that iterative minimi-
zation of Jw(b), once put under a quadratic form around any nom-
inal value of b, allows getting an estimate which corresponds to a
first order approximation:

b̂� bexact � AðbexactÞ Texp
2 � Tavail

2 ðbexactÞ
� �

where AðbÞ

¼ ðXTðbÞXðbÞÞ�1XTðbÞ ð22a;bÞ

Here the nominal value used for this series expansion of Jw (b) is the
exact value bexact, with the implicit assumption of a convergence of
the minimization algorithm towards this value. X(b) is the matrix of
the sensitivity coefficients of model (21b) with respect to the
parameters present in b.

2.3. Calculation of the different sensitivity matrices

The sensitivity matrix Xtrue(b) of T true
2 , that is the transmittance-

based model (14), with respect to the parameters present in b is
introduced [5]:

XtrueðbÞ ¼ dT true
2

db






T1

¼ dT true
2

dW
dW
db
¼M Texact

1

� �
SwðbÞ ð23Þ

Matrix Sw of the sensitivity coefficients of transmittance W to the
different components of the parameter vector is introduced:

SwðbexactÞ ¼ dW
db
ðbexactÞ ¼ Sw1ðbexactÞ Sw2ðbexactÞ � � � SwnðbexactÞ

� �
ð24Þ
Here, each of the column vectors Sw j(bexact) has been presented in a
concatenated form of matrix Sw (bexact). Each of these vectors is the
sensitivity coefficient of transmittance W(t,bexact) to parameter bj at
the different measurement times tk [4]:

½SwðbexactÞ�kj ¼ ½SwjðbexactÞ�k ¼
@W
@bj
ðtk; bexactÞ for 1 6 k

6 m and 1 6 j 6 n ð25Þ

Let us note that sensitivity matrix Xexact(b) is completely different
from the sensitivity matrix of the impedance-based model (11b),
which is defined by:

dT2

dbz2






q
¼MðqÞ dZ2

dbz2
ð26Þ

Using the same chain derivation rule as in (23), an expression for
the sensitivity matrix X present in Eq. (22b) is:

XðbÞ ¼ dTavail
2

db







Texp

1

¼M Texp
1

� �
SwðbÞ ð27Þ
2.4. The estimation error

One focuses here on the current value of the residual vector,
whose criterion (21a) is the square of its norm, which is rewritten
with a development of the vectors that correspond to both
measurements:

rðbÞ � Texp
2 � Tavail

2 ðbÞ ¼ Texp
2 �MðWðbÞÞðTexact

1 þ e1Þ
¼ Texp

2 � T true
2 ðbÞ �MðWðbÞÞe1 ð28Þ

We consider now the matrix multiplier M(W(b)) of noise e1 in the
last term of this equation. It depends on the current value of the
parameter vector b but can be related to its exact value bexact, using
the linear character of function M() of Rm into Rm � Rm:

MðWðbÞÞ ¼ MðWðbexactÞÞ þMðWðbÞ �WðbexactÞÞ ð29Þ

So, the transmittance difference in Eq. (29) can be written for a va-
lue of b in the neighbourhood of bexact (first order expansion):

WðbÞ �WðbexactÞ � SwðbexactÞÞðb� bexactÞ ¼
Xn

j¼1

SwjðbexactÞ bj � bexact
j

� �
ð30Þ

So, Eqs. (28)–(30) allow getting a new expression for the estimation
error (22a):

eb̂ � b̂� bexact ¼ AðbexactÞrðb̂Þ

¼ AðbexactÞ Texp
2 �T true

2 ðbexactÞ�Kðb̂Þe1

� �
ð31Þ

with

KðbÞ ¼MðWðbexactÞÞ þMðSwðbexactÞðb� bexactÞÞ ð32Þ

Eq. (31) can be also written, using (20a):

eb ¼ Aðe2 � Kðb̂Þe1Þ ð33aÞ
with A ¼ AðbexactÞ ¼ ðXT XÞ�1XT where X ¼MT1Sw and MT1 ¼
M Texp

1

� �
and Sw ¼ SwðbexactÞ ð33bÞ

The estimation error eb̂ ¼ b̂� bexact is introduced in (33a), using
(32):

eb̂ ¼ Aðe2 �MWe1 �M Sweb̂

� �
e1Þ with MW ¼MðWðbexactÞÞ ð34Þ

The last term of (34) is modified using the commutative property of
the matrix form of the corresponding convolution product:
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eb̂ ¼ Aðe2 �MWe1 �Me1Sweb̂Þ with Me1 ¼ M e1ð Þ ð35Þ

This allows the calculation of the estimation error:

eb̂ ¼ ðIn þ AMe1SwÞ�1Aðe2 �MWe1Þ ð36Þ

A first order series expansion, for a low norm of e1, of the inverse of
(In + AMe1Sw) is implemented:

eb̂ � ðIn � AMe1SwÞAðe2 �MWe1Þ � Aðe2 �MWe1Þ ð37Þ

Let us note that, strictly speaking, the above series expansion
should be made with dimensionless vectors, that is with the use
of scaled sensitivity coefficients [4]. However, this does not modify
the order of the corresponding terms.

This shows that the estimation bias is of the second order with
respect to the measurement noise, even if no direct explicit expres-
sion is available:

bb̂ ¼ Eðeb̂Þ ¼ �AEðMe1SwAðe2 �MWe1ÞÞ ð38Þ

The variance–covariance matrix of the estimation error can be
calculated:

covðeb̂Þ ¼ covðb̂Þ ¼ E ðeb̂ � bb̂ÞðeT
b̂
� bT

b̂Þ
h i

� E eb̂eT
b̂

� �
¼ AcovðeÞAT ð39aÞ

with

e ¼ e2 �MWe1 ¼ �MW Im½ �e� ð39bÞ

The expression of the variance–covariance matrix of modified noise
e can be derived:

covðeÞ ¼ E e2eT
2

� �
þMW E e1eT

1

� �
MT

W � E e2eT
1

� �
MT

W �MW E e1eT
2

� �
ð41Þ

Because of assumptions (20b) and (20c):

E e2e
T
2

� �
¼ covðe2Þ ¼ r2Im; E e1e

T
1

� �
¼ covðe1Þ ¼ r2Im; E e2e

T
1

� �
¼ E e1e

T
2

� �
¼ 0 ð42Þ

Eq. (41) becomes:

covðeÞ ¼ r2Im þMWðr2ImÞMT
W ¼ r2 Im þMW MT

W

� �
ð43Þ

This is substituted into (39a):

covðb̂Þ � AcovðeÞAT ¼ r2ðXT XÞ�1XTðIm þMW MT
WÞXðX

T XÞ�1 ð44Þ

which yields:

covðb̂Þ ¼ r2ðXT XÞ�1 In þ XT MW MT
W X XT X
� ��1

� �
ð45Þ

For practical reasons, one can replace, in the above expression, bexact

in the definition (34) of MW �M(W(bexact)) by its available value,
that is its estimated value, and the same is true for sensitivity ma-
trix X of model (21b):

MW �Mavail
W ¼MðWðb̂ÞÞ as well as X � Xavail

¼MT1Swðb̂Þ where MT1 ¼ M Texp
1

� �
Þ ð46Þ
3. Application of the transmittance-based parameter estimation
technique

3.1. The three-layer method and the associated decrease in the number
of its unknowns

As an example, the preceding transmission-based estimation
technique will be applied to the measurement of thermal diffusiv-
ity of light insulating materials that has already been developed in
our laboratory, the three-layer method [9].
Fig. 4, already displayed above, gives the scheme of the experi-
mental setup: the sample to be characterized, of low thickness e, of
conductivity k and volumetric heat capacity qc, is set in between
two brass slabs and a planar heating resistor, located below the
lower slab, allows creating a surface heat source q(t). This source
is converted into a flux that enters the lower brass slab, with a flux
in the opposite direction whose value is limited by the presence of
an insulating material. Temperatures of the lower and upper brass
samples, respectively T1 for the front face and T2 for the rear face,
are measured by two thermocouples and recorded.

We assume here that heat transfer is 1D, that is that the heat
transfer coefficient h3 characterizing the lateral convection and lin-
earized radiation losses does not affect the response of the thermo-
couple hot junctions located close to the vertical symmetry axis of
the system and that both the heating source and the pressure on
the assembly are uniforms in the corresponding contact plane.

With this 1D assumption, it is possible to demonstrate the
advantage of working with transmittance-based models rather
than with impedance-based ones.

The quadrupole modelling [12] is used here. Since the thermal
resistances of the brass slabs, numbered 1 (front face) and 2 (rear
face), of thicknesses ebrass i and volumetric capacity qcbrass, can be
neglected, these are modelled by thermal capacities Ci = qcbrass-

ebrass i, for i = 1 or 2, while heat losses on the corresponding external
faces are modelled by heat transfer coefficients h1 and h2. Contrary
to what is shown in Fig. 4, we assume here, for simplicity reasons
that will not affect our conclusion, that no insulating material for
limiting the losses over the lower (front) brass sample is present
in the setup stack: this allows the use of a convecto-radiative
transfer coefficient h1 with the surrounding environment.

In the Laplace domain, calling p the Laplace parameter, the solu-
tion of this problem is given by:

T1

�q

" #
¼

1 0
h1 1

� �
1 0

pC1 1

� �
A B

C D

� �
1 0

pC2 1

� �
1 0
h2 1

� �
T2

0

" #

ð47aÞ

or, after a development:

T1

�q

" #
¼

1 0

h1 þ pC1 1

" #
A B

C D

" #
1 0

h2þ pC2

" #
ð47bÞ

T2

0

" #
¼

Aþ BH2 B

C þ AH1 þ DH2 þ BH1H2 Dþ BH1

" #
T2

0

" #
ð47cÞ

where:

H1 ¼ h1 þ pC1; H2 ¼ h2 þ pC2; a ¼ k
qc

A ¼ cosh e
ffiffiffiffiffiffiffiffi
p=a

p� �
; B ¼ sinh e

ffiffiffiffiffiffiffiffi
p=a

p� �
=ðk

ffiffiffiffiffiffiffiffi
p=a

p
Þ

C ¼ k
ffiffiffiffiffiffiffiffi
p=a

p
sinh e

ffiffiffiffiffiffiffiffi
p=a

p� �
; D ¼ A

ð47dÞ

Solution of the direct problem, in terms of front and rear face tem-
perature responses to q(t) results from numerical inversion [13] of
the Laplace transforms of both surface temperatures:

T1 ¼
Aþ BH2

C þ AðH1 þ H2Þ þ BH1H2
�q ¼ Z1�q ð48Þ

T2 ¼
1

C þ AðH1 þ H2Þ þ BH1H2
�q ¼ Z2�q ð49Þ

Of course, the operational impedances Z1 and Z2, that is the factor of
�q in the above two expressions, of the same form as Eqs. (9a) and
(9b), can be recognized. The ratio of the two expressions makes
the operational transmittance W21, noted W here, appear:



Table 1
Values of the different parameters of the impedance-based model for the rear and front face temperatures T2 and T1.

Quantity Sample
conductivity

Sample volumic
heat

Sample
thickness

Heat loss
coefficients

Heat capacities of brass layers by
unit area

Surface heat source
strength

Duration of the
excitation

Symbol k qc e h1 = h2 C1 = C2 q0 t0

Unit W m�1 K�1 J m�3 K�1 m W m�2 K�1 J m�2 K�1 W m�2 s
Value 0.025 4.0 104 6.41 10�3 5 1292 2840.4 10
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T2 ¼
1

Aþ BH2
�q ¼W T1 ð50Þ

If one refers to Eq. (10), the operational transmittance W depends
on three parameters only, two of them being dimensionless and
the third one having the dimension of a time. These can be gathered
in a parameter vector b of a model of the B type using a transmit-
tance transfer function:

T2ðt; bÞ ¼Wðt; bÞ � T1ðtÞ where b ¼ a
e2 ;

h2e
k
;

C2

qce

� �T

ð51a;bÞ

Let us note that b can be defined by any other independent combi-
nation of the three same parameters.

A close look at the expressions of Z2 shows that it depends on
parameter vector bz2 which includes three more parameters, the
front face Biot number h1e/k, a capacity ratio C1/(qce) linked to
the brass capacity C1 of the front face and a parameter having a
physical dimension, the thermal resistance e/k of the sample:

bz2 ¼
a
e2 ;

h2e
k
;

C2

qce
;
h1e
k
;

C1

qce
;
e
k

� �T

ð51cÞ

or any combination of the same parameters.
If the intensity of the source is unknown, we are in the A3 type

of problem, and the transient electrical power has to be measured
in order to get the bz2 parameters detailed in Eq. (51c).

In a A2 type configuration, the time shape of the source inten-
sity is known, within a proportionnality factor q0, that is q(t) = q0

f(t), where f(t) is for example a door function, see Eq. (53) further
down, and the corresponding model becomes:

T2ðt;b2Þ ¼ Z2ðt;bz2Þ
�q0f ðtÞ ð52aÞ

where:

b2 ¼
a
e2 ;

h2e
k
;

C2

qce
;
h1e
k
;
C1e
k
;
q0e
k

� �T

ð52bÞ

or any combination of the same parameters. Let us note that the
number of parameters in b2, Eq. (52b), is the same as in bz2, Eq.
(51c), because its 6th parameter group e/k has been replaced by
q0e/k.

So, when two temperatures are measured, that is in the B case,
the corresponding model (51a) is more parsimonious than the clas-
sical impedance models of the A1 type or of the A2 type (three
parameters less).

In fact, in this example, whatever the model used, three param-
eters can be supposed to be known without any need for their esti-
mation: C1, C2 and e. So the transmittance method of the B type
requires estimation of 3 parameters (a,k,h2) instead of four param-
eters (a,k,h2,h1) for the impedance model of the A1 type and five
parameters (a,k,h2,h1,q0) for the A2 type. This is made through
the minimization of the least square sum (19) for
b ¼ a k h2½ �T : this is either a 25% or a 40% reduction in the num-
ber of parameters using a single experimental temperature output
response, which tends to reduce the standard deviation of the esti-
mate in a substantial way, see [6] and the comparative study made
in Section 3.3 further down.
3.2. Monte Carlo versus stochastic parameter estimation error in the
transmittance model for the three-layer method

We have selected the parameter values shown in Table 1 to
model the exact output of the T2 signal for a door excitation of
duration t0:

qðtÞ ¼ q0½HðtÞ �Hðt � t0Þ� ð53Þ

where H () is the Heaviside function.
The T1 and T2 temperature signals have been sampled for m

equally spaced times over a duration tm = tmax.
A noised synthetic signal has been generated by addition of a

normal independent identically distributed noise of zero mean
and standard deviation r according to Eqs. (20a) and (20b). This
procedure has been repeated N times in order to simulate N exper-
iments in a Monte Carlo type process. For each experiment (num-
bered i), iterative minimization of least square sum (19) by the
Levenberg–Marquardt algorithm on the t1 tm½ � interval has gen-
erated an estimation b̂ðiÞj for each of the three parameters (j = 1 to
3). The characteristics of these estimations are given in Table 2.

An example of such synthetic ‘‘experimental’’ temperature re-
sponses is given in Fig. 5. The temperature residuals rðbÞ ¼
Texp

2 �MðWðb̂ÞÞTexp
1 are also plotted in the same figure.

Table 3 shows the results of these inversions, in terms of aver-
aged �̂bj and exact bexact

j (same as in Table 1) values of each param-
eter and in terms of their statistical sb̂j

and stochastic standard
deviations:

�̂bj ¼
1
N

XN

i¼1

b̂ðiÞj ; s2
b̂j
¼ 1

N

XN

i¼1

b̂ðiÞ
2

j � �̂b2
j ; r2

b̂j
¼ ½covðb̂Þ�jj ð54Þ

where the variance–covariance matrix covðb̂Þ is calculated using
Eqs. (45) and (46).

These parameters have been deduced from the three parameter
groups of parameter vector b with the assumption that the thick-
ness e of the sample and the thermal capacity C2 of the second
brass layer are both known.

The last column in Table 3 corresponds to the estimated volum-
tric capacity qc = k/a of the sample: it is just deduced from the ratio
of the a and k estimations, for each simulation. Selection of a differ-
ent combination of the three parameters to be estimated (the coef-
ficients of the parameter vector b) out of the four parameters a, k,
h2 and qc, with a later deduction of the remaining 4th one does not
change their values, see [6].

Several remarks can be made here about these results:

– the estimation bias, evaluated through the N Monte Carlo sim-
ulations of inversion by the difference between lines 2 and 1
in this Table is nearly equal to zero: if this bias is normalized
by the exact value of each of the three parameters, one can
see that its relative value is less than 0.034%;

– even if it is not perfect, the Monte Carlo (statistical) standard
deviation of these parameters is very close to its stochastic
counterpart: this shows that our variance–covariance matrix
derivation (45) is pertinent and can allow to bypass the lengthy
Monte Carlo simulation process to assess the precision of the
estimates in a real transmittance-based estimation;



Table 2
Characteristics of the N synthetic measurements.

Parameter Number of times of
measurement

Number of synthetic
measurements

Duration of the estimation
interval

Standard deviation of the noise of T2 and T1

Symbol m N tm = tmax r
Value 1000 10,000 200 s 0.01 K

Fig. 5. Three-layer method: synthetic temperature responses and least squares
residuals.
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–t-
he relative standard deviation of the estimated parameters, either
statistical or stochastic, is lower than 1%, for a signal over noise
ratio Texp max

2 =r for the Texp
2 temperature response of the order of

330: this means that precise measurements of the two tempera-
tures, in a 3-layer method experiment for characterizing a light
insulating sample, does not lead to a too high amplification of
the measurement noise. This allows a precise characterization of
the two thermal parameters of the sample. Of course, this conclu-
sion relies on the assumption that the original impedance model
(48) and (49) used for deriving the expression of the impedances
is a good representation of the real experiment;
3.3. Relative perfomances of the parameter estimations by the
transmittance model and by the impedance models for the three-layer
method

Comparison between the results of the estimation techniques
based on the models of the B type (transmittance), and of the A1
and A2 types (impedance) are presented in Table 3 in terms of rel-
ative standard deviation of the estimated parameters calculated on
stochastic bases, that is through Eqs. (45) or (13).
Table 3
Comparison between Monte Carlo estimation and exact or stochastic characteristics of th

Number j of parameter
Parameter
Unit

1 Exact or averaged value Exact bexact
j

2 Statistical �̂bj

3 Scaled standard deviations (%) Stochastic rb̂j
=bexact

j

4 Statistical sb̂j
=bexact

j

– line 1 in Table 4 is just a duplication of line 3 in Table 3 and
relates to the estimation of 3 parameters by the B type model.

– line 2 in Table 4 corresponds to the same configuration, but the
stochastic standard deviations of the three estimated parame-
ters is calculated by Eq. (45) where the second term in the right
member of this equation is omitted: this corresponds to a case
where noise only affects measured temperature Texp

2 while the
other temperature is measured without any noise
Texp

1 ¼ Texact
1

� �
. Comparison of lines 1 and 2 shows that presence

of noise in the measurement of this pseudo-causal signal
implies only a 0.5% increase of the standard deviation of the
four parameters that are looked for at most (see columns 3 to
5, and 8). In other configurations, such as a sample made out
of a heavy insulating material (PVC type), the corresponding
increase of these standard deviations can reach 3%. The same
effect appears when the original thickness (ebrass = 0.4 mm) of
the two metallic slabs is changed into 4 mm: the corresponding
increase of the standard deviations becomes equal to 9%. A sim-
ilar increase is observed if the duration of the estimation inter-
val is increased. This moderate contribution of the second term
of (45), which does not exceed 10% (in terms of standard devi-
ation increase) under realistic conditions, stems from the fact
that the experimental excitation Texp

1 is convoluted with a trans-
mittance function that damps its noisy component.

– inversion of the single Texp
2 signal by transmittance model (49) of

the A1 type, with 4 parameters is not possible since the stan-
dard deviations of the estimates of h1 and h2 become very large:
this is due to the ill-conditioning of the information matrix STS
(once the sensitivity coefficients which forms the columns of
the sensitivity matrix S have been scaled by the exact values
of the corresponding parameters). This is caused by the fact that
the sensitivity coefficients to h1 and h2 are nearly proportional.
Consequently the model has only 3 and not 4 degrees of free-
dom. That is why assumption h1 = h2 is perfectly legitimate.
The relative standard dispersions calculated for the three
remaining parameters with this assumption are shown in line
3 of the table: comparison with results of the estimation of B
type, also with 3 parameters (line 1) shows that there is a 8%
reduction of the relative standard deviation of the conductivity
(from a value of 0.08%) and a 6% increase of the relative disper-
sion of the diffusivity (from a value of 0.26%).

So the transmittance method (B type) is more appropriate for
estimating the diffusivity here (and also the volumetric heat, see
column 8) than the impedance method with perfectly know exci-
tation (A1 type) while the opposite is true in terms of conductivity
estimation.
e estimates for the transmittance method (B type model).

1 2 3
b1 = a b2 = k b3 = h2 qc = k/a
10�7m2. s�1 W m�1 K�1 W m�2 K�1 J m�3 K�1

6.2500 0.0250 5.0000 40,000

6.2521 0.0250 5.0017 40,027

0.2588 0.0885 0.2326 0.3400

0.2588 0.0879 0.2311 0.3390



Table 4
Comparison of the performances of the estimation methods of the B, A1 and A2 in terms of relative stochastic standard deviation rb̂j

=bexact
j of the estimated parameters (%) for a

temperature noise of standard deviation r = 0.01 K for Texp
2 .

Type of model and equation for the standard deviation Number of parameters to be estimated b1 = a b2 = k b3 = h2 b4 = h1 b5 = q0 qc = k/a

1 B with Eq. (45) same noise for Texp
2 and Texp

1
3 0.2588 0.0885 0.2326 0.3400

2 B with a zero noise for Texp
1

3 0.2584 0.0882 0.2319 0.3395

3 A1 with Eq. (13) with assumption h1 = h2 3 0.274 0.0813 0.107 0.347
4 A2 with Eq. (13) with assumption h1 = h2 4 0.539 3.553 1.805 3.245 4.031
5 A2 with Eq. (13) 5 0.539 3,553 3 � 106 3. 106 3.245 4.031
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The results impedance method of the A2 type (known shape of
the intensity of the heat source but unknown proportionality coef-
ficient q0) are also shown in the same table. With the assumption
h1 = h2 (line 4), the 4 parameters can be estimated, but the relative
standard deviations of the estimated parameters display disper-
sions that are twice as high for the diffusivity, when compared
with the B type of estimation (line 1). These estimations are even
40 times higher for thermal conductivity and 12 times higher for
the reconstructed volumetric heat. Of course, no assumption about
the two heat losses coefficients leads to an impossibility of recov-
ering all the values of the five parameters (see line 5) for the same
reason as for the A1 type method. However estimations of the
three other coefficients, a, k and q0 are the same, because sensitiv-
ity to the heat loss coefficients are low, since the value of h1 = h2 is
low with respect to the heat capacities C1 = C2 of the brass layers in
Eqs. (47c) and (49).

In practice, the A1 assumption, that is a perfectly known q(t)), is
unrealistic. In the absence of the possibility of direct or indirect
measurement of this excitation, the A2 estimation method (known
time shape of q(t), with an unknown q0 factor) seems to constitute
a reasonable compromise if an impedance type estimation tech-
nique has to be implemented: here the operator switches the ’on’
(at time t = 0) and ’off’ (at time t = t0) knob of the resistor: a perfectly
known door function surface heat source (54) can be assumed if:

– the heat capacity of the heating probe is neglected,
– the variation of its electric resistance with temperature is

neglected,
– the heat losses to the upstream part of the 1D thermal circuit

are neglected: they concern either the insulating material, or
the h2 coefficient in the simplified modelling made in Section 3.1
and shown in Fig. 4. This requires the knowledge of four extra
parameters: the thickness of this material, as well as its conduc-
tivity, its volumetric heat and the boundary condition of the
opposite face.
Fig. 6. Counting of the number of parameters of impedance-based and transmit-
tance-based characterization methods: (a) homogeneous sample, and its stimula-
tion and measurement systems; (b) simplified thermal network of the possible
measurement configurations.
4. Transmittance-based models and their parsimonious
character

One of the most effective reason for an impossible estimation of
the parameters of a model lies in its lack of parsimony. So a general
comparative study of the numbers of parameters of the transmit-
tance method and of the more classical impedance method will
be made here.

We restrict this study to the problem of characterizing a sample
made out of a homogeneous material using a uniform surface tran-
sient heat source q(t)(W) with one or two possible measurements,
either the rear face temperature T2(t) (temperature on the face
opposite to the source, impedance method) or both the rear face
temperature as well as the front face temperature T1(t) (transmit-
tance method), see Fig. 6a. The temperature of the outside environ-
ment is assumed to be equal to the initial temperature of the whole
sample/front and rear face material system and is taken as a refer-
ence zero temperature.
This analysis is valid for a corresponding heat transfer model in
any one-dimensional case, that is either for a one-directional pla-
nar sample (slab) or for a cylindrical or spherical sample.

The sample transfer matrix present in the thermal network in
Fig. 6b is composed of the four coefficients A, B, C and D already gi-
ven in Eq. (47c) for a planar geometry. Apart from the Laplace
parameters, these coefficients depend on two parameter groups,
the sample characteristic frequency a/e2 and the sample thermal
resistance e/k (for a unit area) or any other combination of these
groups. In this figure this sample quadrupolar matrix [12] is sur-
rounded by a network corresponding to:

– the front face system (for example, a brass layer and conducto-
radiative losses represented by a h1 coefficient in the three-
layer model depicted in Section 3.1) and the stimulation system
where the q(t) power is dissipated. This heating probe may have
its own thermal inertia and thermal resistance;

– the rear face system (for example, a brass layer and conducto-
radiative losses represented by a h1 coefficient in the previous
three-layer model).

Both systems can be represented by a 2 � 2 matrix: this yields a
global quadrupolar equation formed by the front face/sample/rear
face setup involving three matrices such as Eq. (47b).

The A1 estimation technique is first considered: calculation of
the rear face temperature response T2(t), starting from a perfectly
known heat source q(t), requires the knowledge of the two inde-
pendent parameters of the sample, as well as the knowledge of
nF and nR independent parameter groups present in the coefficients
of the front face and of the rear face matrix respectively. So the to-
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tal number of parameters of the heat transfer model used by this
technique is:

nA1 ¼ nF þ nR þ 2 ð55Þ

In the A2 estimation technique, the same nA1 independent parame-
ter groups associated to impedance Z2 are present, with an addi-
tional multiplicative constant q0 present in the definition of q(t):
q(t) = q0f(t). However, this constant merges with one of the nF

parameter groups present also as a multiplicative constant and, fi-
nally, the number of independent parameter groups of the model
remains unchanged:

nA2 ¼ nA1 ¼ nF þ nR þ 2 ð56Þ

Let us note that a physical explanation can be given for this absence
of increase in the number of parameter groups: impedance Z2 is ex-
pressed in K W�1 and has the units of a thermal resistance. As a con-
sequence one of its parameter groups, a multiplicative constant (in
the Laplace domain) has the same unit and merges with q0(W) to
get a product T2 in kelvins since f(t) is dimensionless.

We do not deal with the number of parameters of the models of
the A3 type, where q(t) is completely unknown, because it requires
a separate measurement of this input, which is not within the
scope of this study.

In the B estimation technique, where both experimental tem-
peratures T1 and T2 linked by a transmittance transfer function W
are measured, it can be shown that this transmittance function
does not depend on the parameters of the front face system. It de-
pends only on the 2 independent parameter groups of the sample
as well as on the nR parameter groups in the rear face matrix. How-
ever, since W should be dimensionless, there is also a merge of one
independent non dimensionless parameter group of the sample
with a corresponding group of the rear face matrix and, conse-
quently, a decrease by one unit of the number of independent
parameters of the B model:

nB ¼ nR þ 1 ð57Þ

A last interesting case, called A’ here, can also be considered: it cor-
responds to the simultaneous measurement of the rate of heat flow
/1(t), see Fig. 6b, entering the sample (W), by a transient fluxmeter,
together with the rear face temperature response T2. The corre-
sponding model can be written in the Laplace domain:

T2 ¼ Z02 �/1 ð58aÞ

It can be shown that the number of independent groups of param-
eters present in impedance Z02 and consequently in this model is:

nA0 ¼ nR þ 2 ð58bÞ

Let us note that there is one more parameter present in the A0 model
than in the B model: this extra parameter stems from the fact that
impedance Z02 has to be used to transform an input /1 in watts into
an output T2 in kelvins while this is not the case for the dimension-
less transmittance W.

So T1 to T2 models using transmittance transfer functions (B
type) are always more parsimonious than q to T models using
impedance transfer functions (A1 or A2 type), with a difference
in the number of independent parameter groups equal to nF + 1.
This conclusion is also valid if the transmittance-based models
are compared with impedance-based model where the input is
not the source q anymore but the rate of heat flow /1 entering
the sample (A’ type), where this difference becomes equal to unity.

We have made no assumption in the above comparison be-
tween the B, A and A’ techniques about the possible intrusive char-
acter of the heating probe since it can be taken into account in the
front face quadrupolar representation. However temperature sen-
sors in all these techniques and the flux sensor in the A’ technique
have been supposed to be non intrusive. If this is not the case, the
thermal parameters of these sensors have to be taken into account
in the study of the parsimony of the corresponding models.
5. Conclusions

It has been shown in Section 2.1 that methods consisting in
measuring a temperature T in two separate locations generate a
model that relies these two temperatures through a dimensionless
transfer function, a transmittance, in a convolution product. These
methods can apply to different linear thermal systems with struc-
tural coefficients that do not depend on time. Both measurement
points have to be selected in order to respect some conditions (cau-
sality problem): a temperature response ’’close’’ to the source (a
reference response) can replace it for explaining a response at a
more ‘‘’distant’’ point through another convolution product based
on a dimensionless transfer function of another kind, called a
transmittance here.

When compared to more classical models of the impedance
type, where temperature at a single point is measured as a conse-
quence of a transient heat source that is supposed to be known,
possibly within a multiplicative constant, we have shown, in Sec-
tion 4 for 1D configurations, that these transmittance models dis-
play a significant advantage: by construction, the number of
parameters present in the transmittance function of the ‘‘distant’’
point response is lower than the number of parameters present
in the corresponding impedance model. This type of model is more
parsimonious than any model of the impedance type.

Of course this advantage can be used only if both temperatures
can be measured without any bias and without any intrusive char-
acter that would modify heat transfer in the sample. These condi-
tions are difficult to meet in the flash method (with a radiative
excitation) for measuring a pseudo-causal front face temperature
(a thermocouple is intrusive and a radiative measurement requires
the knowledge of the front face emissivity in the detector spectral
interval over relatively large temperature excursions.

The major difference with impedance type methods is that the
new temperature ‘‘pseudo source’’, which allows the calculation of
the distant point response, is measured with the presence of a cor-
responding noise. A close analysis of the least-square estimation
procedure has allowed here to retrieve here the stochastic proper-
ties of the estimations of the parameters present in the transmit-
tance function.

Results of such an estimation procedure have been applied to the
temperature responses of the three-layer method for thermal char-
acterization of light insulating materials [9]. The solutions of the di-
rect problem are analytical in the Laplace domain here. Monte Carlo
simulations of the experiment have shown that the preceding sto-
chastic analysis was pertinent and that the noise present in the ref-
erence response did not produced any significant bias.

The noise of the pseudo-causal temperature signal affects the
estimated parameters in a very weak way, which accounts for less
than 10% of their value in this configuration.

In the same example, estimations using either the transmit-
tance model with two temperature measurements or the imped-
ance model with a single temperature measurement assuming a
perfectly known intensity of the source, compete equally, in terms
of dispersion around the true mean value of the parameters. Both
models are adapted for providing a different thermophysical
parameter with a high enough precision.

However, in the same configuration, the transmittance model
outperforms the impedance model with a single temperature mea-
surement and where the intensity of the source is known within a
multiplicative constant, in terms of dispersion of the estimates
around their exact values.
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Without any real measurement of the power source, it is diffi-
cult to check the validity of its time shape in the impedance type
estimation technique where a single temperature output is mea-
sured. This may lead to estimation biases. By contrast, this consti-
tutes an advantage of the transmittance technique: any kind of
source variation with time can be used and it is not necessary to
know it since it is replaced by the pseudo-input, the temperature
close to the source, which is measured and not biased conse-
quently. Of course the errors of the estimated parameters present
in parameter vector b still depend on the input.

In order to get the same quality in the estimation error for the
impedance type techniques as in the transmittance-based method,
it is necessary to measure not only the temperature input, but also
the heat source, which is not always an easy task (methods of the
A3 type).

Transmittance models can be extended to similar linear transfer
problems with time independent coefficients where the potential
is not temperature anymore, such as advection–diffusion problems
in mass transfer for a source reconstruction [14] where concentra-
tion potentials and mass flow rates are used. Other applications
based on the measurement of two potentials can be quoted, such
as the characterization of the transient flow of a liquid through a
porous sample, see the step decay method [15] which corresponds
to a non linear model.
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